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Peierls-Friihlich Instability and Kohn Anomaly 

J. V. Pul~, t'2 A. Verbeure, ~ and V. A. Zagrebnov 1'3 

Received November 8, 1993 

A mathematical basis'is given to the Peierls-Fr6hlich instability and the Kohn 
anomaly. The techniques and ideas are based on the recently developed mathe- 
matical theory of quantum fluctuations and response theory. We prove that 
there exists a unique resonant one-mode interaction between electrons and 
phonons which is responsible for the Peierls-Fr/Shlich instability and the phase 
transition in the Mattis-Langer model. We prove also that the softening of this 
phonon mode at the critical temperature (Kohn anomaly) is a consequence of 
the critical slowing down of the dynamics of the lattice distortion fluctuations. 
It is the result of the linear dependence of two fluctuation operators correspond- 
ing to the frozen charge density wave and the distortion order parameter. 

KEY WORDS: Electron-phonon systems; quantum fluctuations; Peierls 
instability; Kohn anomaly. 

1. INTRODUCTION 

The physics of low-dimensional  systems with e lec t ron-phonon  interaction is 
quite nontrivial.  The Peieris-Fr/Shlich (PF)  instability ~'21 together with the 
Kohn  anomaly  ~31 are probably the most impor tant  phenomena  predicted 
and then discovered in the physics of quasi-one-dimensional  conductors. 
For  a review see, e.g., refs. 4 and 5. 

Peierls ~ argued that a one-dimensional  fermion system living on the 
periodic soft lattice 7/0 with period a becomes unstable if the Fermi surface 
+ k F  coincides with + n / 2 a  (half-filled band). That  is, lattice distortion 
which doubles periodicity to 7/2a creates a gap in the electron spectrum. 
Then the energy of the half-filled band is lowered because the energies of 
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the occupied levels are lowered, whereas the energies of the unoccupied 
ones are raised. 

This argument was for zero temperature and it did not take into 
account the cost of the lattice energy required to create the lattice distor- 
tion. It is Frrhlich 12~ who showed that the Peierls instability persists if the 
(classical) lattice restoring forces are weak enough and the temperature is 
sufficiently low. 

For the classical lattice the Peierls-Frrhlich instability can be settled 
as the variational problem of finding the minimum of the thermodynamic 
functional for the electron-lattice system. In this form the Peierls-Frrhlich 
problem has attracted the attention of mathematical physicists, who have 
discovered its relation to the problems of "integrable systems. ''16-91 The 
next important observation was made by Kohnt3~: he showed that, as a 
consequence of the lattice undergoing a Frrhlich distortion, the lattice 
vibrations with the wavevectors close to _+ 2kv can be significantly reduced. 
This softening of the phonon frequency is known now as the Kohn 
anomaly. 

The quantum statistical mechanics treatment of the Peierls-Frrhlich 
instability (but not the Kohn anomaly) was initiated by Mattis and 
Langer, ~1~ who argued that the one-mode model should be exactly solv- 
able. Rigorous work was done in ref. 11 by the approximating Hamiltonian 
method for the free-energy density. This method made possible the rigorous 
analysis of the Mattis-Langer model for electrons interacting via a Bardeen- 
Cooper-Schriefer potential, t12~ This analysis was important in connection 
with the idea ~13~ that the modification of the electron spectrum caused by the 
Peierls-Frrhlich instability could give an essential increase in the critical 
temperature for the superconductor phase transitions in the electron sub- 
system. 

In the present paper we consider the quantum nature of the Peierls- 
Frrhlich instability and Kohn anomaly. The aim of the paper is twofold: 
(1) to  give a rigorous motivation for the one-mode Mattis-Langer 
Hamiltonian t~~ and to extend ref. 11 to the level of the Gibbs states; and 
(2) to give a mathematical treatment of the Kohn anomaly. In both points 
we essentially use the recent theory of quantum fluctuation operators and 
the response theory. ~4-16~ 

The paper is organized as follows. In Section 2 the nature of the 
resonant mode 2kv is clarified on the basis of the response theory, t~6) The 
equilibrium states are described in Section 3 as a solution of the limiting 
Gibbs state correlation inequalities, t17~ The phase transition in the model 
breaks the Zo lattice symmetry down to the 7/zo one and gives two conjugate 
order parameters: the frozen charge-density wave and the lattice distortion; 
see Section 4. In Section 5 we show that the Kohn anomaly softening of 
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the phonon mode is a direct consequence of the critical slowing down of 
the dynamics of the distortion quantum fluctuations. The mathematical 
mechanism yields a linear correlation of the fluctuation operators corre- 
sponding to the above order parameters. 

2. PEIERLS-FROHLICH INSTABILITY 

In refs. 1 and 2 it is argued on the basis of perturbation theory that 
the PF instability is an instability of the electronic system against any 
arbitrary small deformations of the one-dimensional lattice with the 
wavevector 2kv  ( kv  = Fermi momentum). Here we apply recent results on 
the exactness of the linear response theory t'6~ in order to give a rigorous 
proof of this phenomenon. In other words, we prove that the perturbation 
arguments of refs. 1 and 2 (see also refs. 4 and 5) can be turned into exact 
arguments. 

Now the one-dimensional electronic system is a system of fermions 
enclosed in the lattice interval A = [ -  la, - ( 1 -  1) a ..... la] with one-particle 
wave functions the elements in 12(A)= C -'1§ ~, a being the lattice distance. 
The one-particle kinetic energy operator is then 

h .  = -�89 - ~o, ~o > 0 

where 

( A f ) ( x )  = f ( x  + a) - 2f(x) + f ( x  - a) 

with periodic boundary conditions. Let 

e(k) = - eo  cos ka - la 

Then hA has as eigenfunctions tpk(X)= (I/x/-V)#k.,, where V= 21+ 1, the 
volume of A, with eigenvalues e(k) and 

k e A*  = {nn/la; n =  - l  ..... l} 

The free electron Hamiltonian TA = dF(hA)  is then 

TA = ~ e(k)a~al, (1) 
k ~ A *  

where 

1 
a * =  , -  ~ e 'kxa*(x) 

x / V x o A  
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satisfying the anticommutation relations 

{a(x), a*(y)} = 6 ....... 

{a(x), a(y)} = 0  

The unique equilibrium state 69~ "A at fi = 1/kT and chemical potential 
/a for TA is known to be the quasi-free state 118~ with the following two-point 
function: 

0, A * w~,,(a~.ak,) = 3kynk(fi ,  lZ) (2) 

where 

1 
nk(/~, ~ ) =  1 + e  € 

Remark that the thermodynamic limit (i.e., A --. 7/) of this equilibrium state 
0 where does exist as the well-known electron state coa.,, 

0 , coa,,(ak ak, ) = r -- k') nk(fl, #) (3) 

Now we compute the total response on the electron system due to a 
perturbation of the fluctuation type. Thermodynamically the free electron 
Hamiltonian (1) is an extensive quantity of the order of the volume V. The 
perturbation will be of the order V ~/2, and hence very small. It does not 
change the thermodynamics of the system (i.e., it does not alter the bulk 
properties of the system), but the perturbation will have an effect on the 
fluctuations around the equilibrium. 

We take the following perturbation: 

1 ~ (a*ak+q+a~+qa~) (4) 
P A(q) = - - ' ~  k " 

Clearly P, (q )  is a density fluctuation of wavelength q. Due to the fact that 
the free fermion state (3) is exponentially clustering, it follows from ref. 16 
that, for all finite temperatures, the equilibrium state of the perturbed 
system T~ + PA(q) exists and can be expressed explicitly in terms of the 
unperturbed state. The bulk properties of this state coincide with those of 
the unperturbed state, but the perturbation is effective and nontrivial on 
the level of the fluctuation observables. Denote this state by co~,,eA ," then by 
Theorem 4.1 of ref, 16 one has the following formula, expressing the expec- 
tation value of the perturbation in the perturbed state, i.e., the isothermal 
susceptibility: 
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z(q, f l )=  lim lim 
) , ~ 0  A ,~ 

o~P:'(p A(q)) -- w~.u(Pa(q) ) 

= lim [Wff.~(PA(q))-  eo~ 
A 

=liAna (--fl) ;~ fo ds~ PA(q)) (5) 

This is the total response against the perturbation (4). 

T h e o r e m  2.1. Let the Fermi level wavevector kv be fixed by 
= -eo cos akv; then the isothermal susceptibility x(q, fl) in (5) exists and 

has the following properties: 

(i) I f f l < o %  then x(q, fl) is finite for all q. 

(ii) lima~o~z(q, fl) is finite for q:/: _+2kv and is divergent for 
q = +2kv. 

ProoL The proof of the existence and the first part of equality (5) is 
the most difficult part of the statement. Technically it reduces to the linear 
response proof of ref. 16 and we omit it here. The right-hand side of 
formula (5) can be computed explicitly, yielding 

---f ( , x(q, fl) a "/~ dk 1 1 +q) e fie(k) no-~/a e ( k ) - e ( k  +q) q-e  #~(k 1 + 

a r nla e f l (e (k) -~(k+q})-  1 e fle(k+q) 
= -  I d k  n-_~/~ e ( k ) - e ( k + q )  (e~r 

Clearly for finite fl, the singularity at e(k)= e(k + q) is integrable. Now we 
look at the limit fl --, oo, i.e., 

a rn/o - dk 
lim x(q, # ) =  lim ~ J_,,/,, sin(qa/2)~~-(k+q/2)a 

x [nk +~(/L ~)-nk(/~, t~)] 

By the definition of the Fermi level kv one gets 

( - f : f  ) d k .  s in(k+q/2,a 
a _~  kr + 

x(q, fl) = 2neo sin(qa/2) ~-kF-q -q 
lim 

Clearly 
lim x(q, ~ ) =  --oo 

q ~ + 2 k F  

but I : < ( q , ~ ) l < ~  ifq:~ +2kv. 1 
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We should note that as a consequence of ref. 16, we are able to 
compute the total dynamical response (Kubo formula). This gives a more 
canonical meaning to earlier derivations. In fact, we prove that the total 
dynamical response of the free electron system to a density fluctuation of 
momentum q ~ 2kv is finite for all temperatures, including T =  0. However, 
if q = ----t-2kF, the system is unstable under these perturbations in the ground 
state. This constitutes a rigorous setting of the well-known Peierls 
instability. For one of the first mathematical results in this direction see 
ref. 19, where a mean-field version is discussed. 

Theorem 2.1 demonstrates the necessity of taking into account (as 
most important) the interaction between the electron system and the lattice 
fluctuations with the specially tuned value of the transfer momentum 
q =-I-2k F. In fact we shall study the Peierls-Fr6hlich instability in the 
standard setting of the tight-binding model ~4'5~ in solid-state physics. 

3. L IMIT  GIBBS STATES OF THE T I G H T - B I N D I N G  MODEL 

We consider the limit Gibbs states of the tight-binding model by 
means of the correlation inequalities for states on the algebra of observ- 
ables. ~7~ It has some advantages for our aims in the sense that one can see 
better and use more efficiently the fact that the equilibrium states are deter- 
mined solely by the commutator  with the Hamiltonian. 

Let us first formulate the model. Denote by ~ = 1 2 ( 7 / a )  and 
d +  = ~ r177  the CAR ( + )  and the CCR ( - )  algebras, respectively, for 
the one-particle lattice space / e .  We shall use the obvious notation 
~r =~•  The algebra of observables for the infinitely extended 
system is 

and for the finite subsystems 

d , ,  = ~ +  @ ~ ~ - 

~r contains the observables of the electrons and ~r the observables of the 
lattice vibrations. The latter are generated by the Fock boson creation and 
annihilation operators b '~ ( x ) ,  x e 2v o : 

[b(x),b'~(y)]=~.~,y; x, y~-~  

[b(x), b(y)]  = 0 

The local Hamiltonian of the model is given by 

HA = T ~ 1 7 4  +).BA | + 2B*| + 4 | 

+4| ~ 12pbr.Abp.A (6) 
p~A*\q  
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Here the sum of the last two terms corresponds to the Hamil tonian  14pJ, of " ' A  
the harmonic  lattice 7/a.(t~ Fur thermore ,  

1 
bA = ' - ~  x~A eiqXb(x)- b-,l,A 

1 
BA --x/r-~ l,~o a*ak +q 

with the special choice of q =  +_2k v for which the P H  instability was 
demonst ra ted  in the previous section. Moreover,  from now on we limit our  
discussion to the case of chemical potential  ~ = 0, i.e., to the most  unstable 
case of the half-filled band. (4"5) From above it follows that then q is chosen 
to be q = x/a. 

The equilibrium state, denoted by top, of the infinitely extended system 
defined by H A in (6) is any solution of the set of correlation inequalities (tT) 

iim flo~p(A* [HA, A ] ) ~ o21~(A *A ) In top(A*A ) 
A to~(AA*) 

(7) 

for all local A E UA ~r 
Up  to an isomorphism the CAR fermion algebra ~r has the following 

structure: 

.d+ = | .d+(c)= | .d+(c ~) 
n~Za nEZ~ 

Because of the last representat ion and since the opera tor  bA is 2~2a-per- 
mutat ion invariant,  due to the fact that  q = n/a, one can use the result of 
ref. 20 and write the equilibrium state co n, the solution of (7), as an integral 
over equilibrium product  states on the product  algebra ~r = d +  | ~r : 

(8) 

Here qn.~ is a state on ~r and 0p.~ is an extremal ~_~a-permutation-invariant 
state on ~r labeled by an index 3, which we drop for notat ional  con- 
venience. Fur thermore ,  r/n and F/p are limit states of the finite-volume states 
q~ and 7/I, respectively, satisfying: (i) 

,7~(x*x) 
A . err >>.q~(X*X) ln / ~ ( x  [H +.A, X]) ~(XX*) 
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for XE ~r with effective electron Hamiltonian 

~  z ) +.A= TA+ )' ,2 a * a k + q + h . c .  
\ k E A *  

(ii) For Ye~CA_: 

, o ~ ( r * r )  

with effective boson Hamiltonian 

Herr , 
_ A = ~ .  I 2 p b p . A b p ,  A + ( A O : A b A + h . c . )  

p~: .A*  

=A = n' / (BA)  

(iii) The time invariance of the equilibrium states yields for each 
finite volume A 

~ | ~ (  [U~ ~, bA ] ) = 0 

with 

eft_ err Herr HA - -  H + . A ( ~  "~ + "~ | - , A (9) 

An easy computation leads to the equation 

12y A = - , ~  ~ x / ~  (10) 

Because of (i) and (ii), the states q~ and 7/~ are Gibbs states for the 
eft effective Hamiltonians H • and q~ | F?~ for the H~ ~ in (9). 

Furthermore, on all local observables, 

lim r/~ | f?~ = rip | ~ 
A 

with the limit state in the support of the measure/~ in (8). 
Equation (10) relates the boson to the fermion states. 
Because of pure symmetry arguments (the 7/2, permutation symmetry), 

the systems H A of (6) and H~ ~ of (9) have the same equilibrium expecta- 
tion values in the thermodynamic limit for all quasilocal observables. 
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Therefore the states q~ and ?/~ are the equilibrium states for the effective 
Hamiltonians H ~  and H _  ~, respectively. The major advantage of this is 
that all correlations for these states are computable. For this reason the 
model is sometimes called soluble. 

In particular, because of the 2~2~ symmetry 

, = l im,A = 0~ ( b ( 0 ) 2 b ( 1 ) )  

As BA/x/~ is a lattice average, the following thermodynamic limit exists: 

= lim eta 

and Eq. (10) becomes 

f2T = -;t~ (11 ) 

This is a self-consistency equation relating the states ~/# and Oa- T he 
parameter ~ in the expression can be taken as z = ~ and then/~ of (8) is any 
probability measure on C. 

Furthermore, as the free energy density functional on the set of states 
is an affine functional, we have that 

f(o9r = f(r/~ | qo) 

for all ~/p| in the support of p in (8). We compute it in Section 6. 

4. THE PEIERLS T R A N S I T I O N  

From the analysis above, the system described by the tight-binding 
model behaves like a coupled fermion-boson model. If one looks at the 
effective Hamiltonian (9), it consists of the sum of the fermion part and the 
boson part. In this section we treat the phase transition, and the corre- 
sponding order parameters in both subsystems will be a frozen charge- 
density waoe and a lattice distortion below the critical temperature. 

The analysis of the self-consistency equation is done in the following 
lemma. 

Lemma 4.1. Equation (11) can be expressed explicitly in terms of 
tr = 2 Re 2T: 

xt2 [~/2~ th(fl/2)E(k) d k (12) 
2 I A I 2  cr = ~r ~ _  ~/_~. E(k) 
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where 

E(k) = [e(k) 2 + a 2] i/2 sign ~(k) 

Proof. First we have to compute 

lim r/~ ( -  ~" n 
V kE~A. a~'+ qt/k) ' q = a  

where ~/~ is the equilibrium state for H err + , / l "  

We diagonalize this Hamiltonian. Remark that we can write 

H e f t  __ 
+ , A - -  

k E 2 *  

where 

{e(k) a*ak + e(k + q) a~+ qak + q + a A(a~ak + q + a*+ qak) } 

E(k) = [e(k) 2 + a~] ,/2 sign e(k) 

E(k + q) = - E ( k )  

# and the c k are again fermion operators defined by the Bogoliubov trans- 
formation: 

a I = u c  I + VC 2 

a 2 = UC 1 - -  ~lC2 

f fA  
uv=2E.k.;( ) lu[2 + 1~ 

where 

and 

aA = 2 Re 27A 

Therefore it is sufficient to diagonalize a Hamiltonian of the type 

~l a*ai + ~2a,*_a2 + a(a*a2 + A*ai) 

where the a~ are fermion creation and annihilation operators; clearly 

a I = a  k ,  a 2 = a k + q .  

This being a standard exercise, we give the result 

n eff = +.,, ~. E(k) C~.Ck 
k ~ A *  
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Using this form of the Hamiltonian, one gets straightforwardly that r/~ is 
a quasi-free state with the two-point function 

(~ k ,k '  
~I~(C*Ck.) = 1 + e € 

and 

=-1'~12 ~ ( v  k ~ �9 (a'~+qak+a*ak+q)) 
_ ( c*ck  -2V IAI2 %rl~ ~,~. E(k)J 

- 2  1212 1 1 
- - - - V  -~r '~  Y" E(k)  1 + e  € 

k ~ A *  

In the limit A--* 7/  

. ( 2 0  = - - -  
1212 f-/~ dk 

ff ..[_eBE(k)) I 
- - - - ~ / o  E ( k ) ( 1  

Denote 

f '~/'~ dk 
(#(fl, a ) =  "-,,/,, E(k)(1 + e ae(k)) 

and remark that E(k)>t 0 for k E [n/2a, n/a]. The main result of this sec- 
tion is: 

T h e o r e m  4.2. For ). large (/2 small) enough, there exists a critical 
temperature Tc such that: 

(i) For T~> To, the only solution of (12) is a = 0 .  

(ii) For T<  To, Eq. (12) has the solutions a = 0  and ao#0 ,  where Co 
is given by 

In  

a o > 0  

~(#, ao)- 2 1212 
this case the spectrum E(k)  has a gap at k = M 2 a ,  because for 

lim E(k)= +2a o 
k ~  •  

822/76/1-2-13 
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Proof. Clearly a = 0  is always a solution of (12). For a:~0, (12) 
becomes 

rcl2 

2 1212- ~(B' a) 

If a + 0 ,  then fq(fl, a)+cS(B, 0), with the property that (q(fl, 0) is 
divergent for large /3 (see proof of Theorem 2.1). Therefore, there is a T c 
such that c~(fl c, 0 )=  rd2/2 1212, 

On the other hand, f9 is a monotonically decreasing function of a and 
if(/3, a ) + 0  if t r+  or. Hence for T <  Tc there is a o > 0  such that 

=s'2 
if(/3, ao) = 2 1212; ao=  ao(T) 

if 2 is large enough. 
The rest is clear from the definition of E(k). | 

Therefore the ground state of the system (6) is always unstable with 
respect to the creation of the gap in the electron spectrum, {1) while for 
T > 0  the system is unstable (phase transition) only if nt2/21212< 
max~ a3(/3, a), i.e., if the lattice is soft for the frequency I2 or if the coupling 
constant 2 is large, c2~ 

This settles the existence of the phase transition and the electronic 
spectrum of the model. Next one should analyze the phonon or boson 
properties of the model. Of course, here one has to look at the boson part 
of the Hamiltonian HA ~. The latter has 7/2Q-permutation symmetry but 
2vQ-translation symmetry. In the following theorem we indicate the spon- 
taneous breaking of this symmetry below the critical point, while the 
7/2cpermutation symmetry is not broken. 

T h e o r e m  4.3. At T=  Tc the lattice in the tight-binding model (6) 
changes the translation symmetry from 2v (for T~> To) to Z2, (for T <  Tc), 
i.e., a displacement phase transition at T,.. 

Proof. By definition, 

1 ( 1 " ]  '/2 Q.,:-~/-~p~oeip"\~-~j (bp.a+b*p,a) (13) 

is the operator of displacement at the site x~A.  Then by (10) and 
Theorem 4.2 one gets 

lim "A " ( 1 )  '/2a~ (14) 
A r/~(ax)= (-e'qx) 2-~ 121 

This means that Or and qo>a~(Q.,)= ( -  1) Ot~>p~ (Qx+~). II 
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Coro l la ry  4.4. For T>~Tc the state r/o| corresponds to the 
tight-binding model (6) with 2 = 0 ,  i.e., it has the symmetry of the lattice 
7/ .  For T <  Tc the state r/a| reduces the symmetry to 2~2o. 1 

In the low-temperature phase the electron subsystem: (1)has a gap in 
the spectrum, ao # 0, splitting the conducting half-filled band into filled and 
empty ones (metal-insulator phase transition); and (2)the order parameter 
is limA t/~>ac(r (frozen charge-density wave with the wave 
vector q = n/a). 

The phonon subsystem manifests: (1)the Bose condensation of the 
phonon mode with p = q  [lima 7/]>t~c(bA/x/r-V)r (2)or,  equivalently, 
deformation of the lattice from 7 /  to 7/2~ symmetry, i.e., a structural 
(displacement) phase transition. 

As is known from ref. 21, the displacement phase transition in the 
lattice (Bose condensation of the q-phonon mode) is connected with a 
nontrivial algebra of fluctuations. 

From the analysis in Section 3 [see (10) and (11)], it is clear that 
~A = O(Vm) ,  such that one cannot expect a reasonable behavior for Har -.A. 
Looking somewhat more closely at =A, one remarks that it is not an inten- 
sive quantity, but a fluctuation. With this in mind we apply the theory of 
fluctuation operators {~4"~5} to examine the boson part of the model. 

5. F L U C T U A T I O N  D Y N A M I C S  

In order to make the mathematical scheme clear, first we introduce 
some generalities about the system of fluctuations carried by a microscopic 
dynamical system, here given by the triplet (~r oga, ~,), where d is the 
algebra of observables, oga is an equilibrium state of the system, and ~, is 
the dynamics defined by the model (6). 

As in refs. 10 and 11, here we have a lattice (7/)  quantum system. It 
is proved in refs. 14 and 15 that one can give a mathematical meaning to 
the limit of operators 

1 
Fa(A)=l im V~---iTy ~ ~ (A;-  ( A ) )  (15) 

l e A  

where Ai is a copy of a local observable A in iE 7/a. The limit is taken in 
the sense of a central limit theorem with respect to the equilibrium state ~oa 
or its local approximations r/p| -A 

( A )  =~op(A) or ( A )  = ~/~ |  

The parameter 6 in formula (15) has to be chosen such that the limit exists 
and is not trivial. If 6 = 0, one has a normal fluctuation; if 6 ~-0, one has 
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a critical fluctuation; 6 depends on the observable A, on the state, etc. In 
fact, one proves that the set ~ =  {F6(A)}, where A belongs to some sub- 
space ~r of ~r is a set of operators, called fluctuation operators. They 
generate a representation of the canonical commutation relations induced 
by a state o3 defined by 

( [ ]) lim exp i2vm+a ~ (A i - - (A ) )  =~(e i~'Fa('4)) (16) 
A i E A  

for all A ~ ~r if ~r is quasilocal. The fluctuation operators satisfy the 
commutation relations 

tO 
a([A, B])  if 6 + 6 ' = 0  

[Fa(A),Fa,(B)]= if 6 + 6 ' > 0  

[.undefined if 6 + 6' < 0 

These commutation relations indicate the classical and/or quantum 
character of the fluctuation operators algebra. 

Clearly the fluctuation operators act on the GNS representation 
space ~ ' ,  generated by all polynomials P of elements of .~, with scalar 
product 

(p(o~), p ( ~ ) )  = cb(P(~)* P ( ~ ) )  

In particular, two fluctuation operators F6(A) and F,v(B) are equal if 

~([F,(A)- F~.(B)]* [F,(A)- F~.(B)])=O (17) 

Finally one can look at the dynamics ~, of the fluctuation operator 
algebra generated by the set .~. It is defined in the Heisenberg picture, 
induced by the microdynamics ct,, by the formula 

~,F~(A)=F~(~,A) (18) 

To conclude this overview of the picture developed in ref. 15, one can state 
that the microsystem carries a macrosystem of fluctuations determined by 
the fluctuation algebra of observables, the state 05, and the dynamics ~,. 
We apply all this to the tight-binding model (6). 

As remarked before, the operators b, and BA in formula (6) are local 
fluctuations; we denote 

b~ = Fg(b) 

B A = Fg(p) 
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i.e., bA is the fluctuation of the local phonon operator b(x), x~_~, and B A 
is the fluctuation of the local electron density p = a*(x)a(x), x �9 77, with 
the wavevector q = n/a. 

Denote by co A the Gibbs state for the model Hamiltonian H A of (6); 
we prove the following important property. 

kemma 5.1. The limit 

is bounded by a constant for all temperatures. 

Proof. Clearly 

+ ~ p )  , r •  

where {., �9 } stands for the anticommutator. 
In our case, because q = ~/~, we have B* = BA, hence 

Now using the inequality of Harris, ~22~ one gets for ( . )  

where (-, .)~ is the Duhamel two-point function .23~ 

1 I~ tre-r 
(A, B)~ = ~  dr tr e_p.., 
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Remark that 

and compute 

d 
T-dtt bA = [HA, bA] = -12b* - ).B* 

Pul6 et  aL 

1 = ~  ([ha, n~], [b,~, n~])_ 

=~-~ A[b~, End,b*]]) 

0 

Furthermore, a straightforward computation yields 

21 
=t2 + ~ - ~  (2e(k)-~(k + q ) - e ( k - q ) )  o~a(a*_qak +q) 

Using the fact that 

[O,) A(a*_qak +q) [ <~ 1 

one gets that this term is bounded by the constant 

o + ak 4 le(k)l 
- -  / a  

All these bounds together prove the lemma. | 

This lemma proves the existence of the fluctuation operator 
Fo(b+(2/O)p), together with the fact that it is normal, i.e., 8=0 .  An 
important consequence of this fact is that 

F~(b if 8 > 0  (19) 

This lemma does not prove that the fluctuations Fa(b) and/or Fo(p) 
exist. In fact, one can show that these fluctuation operators exist if T>  T,.. 



Peierls-Fr6hlich Instability and Kohn Anomaly 175 

This is quite immediate from the fact that above T,. the limit state of co A 
is the product state r/0| q# (see Sections 3 and 4). We have no proof of the 
existence of F,5(b) and F~,(p) if T <  T~. 

Now we treat the case T.~> T~ in the spirit of the Ginzburg-Landau 
theory. It should be remarked that this is just one way to obtain a possible 
value of 6 at the critical point. There are of course many other approaches 
possible, but we are convinced of the fact the critical value 6 is independent 
of these approaches. However, we have no proof of this. Anyway, in order 
to prove our main result, we need only to prove that 6 > 0 at 7',.. 

For T >  Tc we have a proof which is already rather too involved to be 
presented here. To this end, we need the free energy density functional 
defined on the product states r/0 | Oa, determined by the parameter 

and with tr = ( 2 ~ . 2 / g 2 ) z ;  if T~> T~, the value z = 0 is the solution of the self- 
consistency equation (11 ). A straightforward computation in the case of 
uniform density of the electron states in the band yields 

;t 2 Tf~o 
f (T ' z )=-~z2-~eo  -~o deln 2ch (/~2"~-0"2)1/2 (20) 

and the variational problem of statistical mechanics gives 

inf f (T,  T ) = f ( T ,  O) 
T 

for all T>~ T~, with T~ defined by 

222 ('~ th rice 
de =1 

O~0 Jo  e 

(see Theorem 4.2). 
Clearly r ~ f ( T ,  z) is analytic at r = 0  with 

f ' (T )  - Of(T, ~) T=0 ~-----7- =0  

d2f(T,'r' {>00 
f " ( T )  - Oz----------i~ , = 0 

and 

O*f(T. ~) 
> 0  f(4)(To) = Oz4 ,=o 

if T>T,.  
if T=Tc  
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We consider the electronic density fluctuation F,~(p). Then 

1 
F~(p)-  V,/2+~ ~ (a*~ay-q~(a*a.~))e ~̀-" 

xEA 

1 
a k a k +  q V1/2+6 ~ * 

k 

Remark that 

rl# a*ak +q 
k 

We compute 

~(t)=lim SRd~ exp[-flVf(T' r)] exp(itVm-~r) (21) 
~R dr exp[-flVf( T, r ) ]  

i.e., we are looking for 6 such that the random variable r has a finite 
variance and a nontrivial distribution (see also ref. 24). Because the function 
r ~ f ( T ,  r) reaches its minimum at the equilibrium value r = 0 ,  the equi- 
librium state yields the bulk contribution to the limit (21). This formula is 
reminiscent of the Ginzburg-Landau approach for critical phenomena} 2s~ 

Lemma 5.2. For T >  T~, 6 = 0  and 

~bo(t) = exp[ - t2/flf"(T)] 

For T =  To, 6 = 1/4 and 

S dr exp[-flfl4~(Tc) r4+  itr] 

Proof. Consider the expansion around r = 0  for T>~ T,.: 

f "  2 1 4 f(T, ~) =f(T, 0) + -~- (T) r + ~ f c  ~(T) "r 4 + O(T 6) 

For T >  To, f " ( T ) > 0 ,  using the change of variables T '= V~/2z, one 
gets a nontrivial limit for (21) if and only if 6 =0.  For T= T c, f"(T,)=O, 
but ft4)(To) > 0. 

By the change of variables r ' =  V~/4r one gets a nontrivial limit for 
(21) if and only if 6 = 1/4. 

Both limits are formulated in the lemma. | 
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This lemma proves that if the fluctuation operator F~(p) of the 
electronic density exists at Tr then 6 = 1/4. This result, together with the 
result of Lemma 5.1, implies that if the fluctuation operator F~(b) of the 
lattice vibrations exists at To then 6 = 1/4. 

Above To, Lema 5.2 reproduces the existence of the fluctuation 
operators Fo(p) and Fo(b). 

Now we turn to the dynamics ~, [see (18)] of the boson mode Fa(b). 
We start with the first time derivative 

d 
~-~ bA = [Ha ,  ba] = - f2b*  - ).B* 

By taking the fluctuation limit of both sides of this equation, we obtain the 
following equation for the fluctuation operators: 

F~(b ) = -fdF~(b* ) - 7tF~(p )* 
i dt 

It is clear that the boson mode is coupled to the fermion density fluctua- 
tion. Therefore we have to know the time dependence of the latter: 

___a 
= [Ha, BA] = - ~ V  E e(k)a*ak+ q B 

idt  a V "  

A new fluctuation operator appears in the right-hand side of this equa- 
tion. It is essentially the fluctuation of the one-step jump operator 
a*(x) a (x+ 1)+h.c.,  which we denote by Jl. Hence, taking again the 
fluctuation limit in the equilibrium state yields the following equation for 
fluctuation operators: 

d 
F~(p) = 2eoF,(j, ) 

Now we have to examine the time evolution of the right-hand side: 

d (-'~V~k ~(k)a~ak+q ) i dt 

1 
= 2 ~ ~ e(k) 2 a*ak + q - -  22Ba W/~ k 1 ~  e(k)a*ak 

Once again a new operator appears, this time the fluctuation of the two-step 
jump operator . ~ 2 = a * ( x ) a ( x + 2 ) + h . c .  This is easily seen by remarking 
that (let a = 1) 

d e(k )2 = e~ cos z k = ~ (1 +cos  2k) 
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Then 

d 1 , 
id-~t(" '~e(k)  akak+q) 

In the fluctuation limit one gets 

,So d F,5( j ,  ) = ~.~F,~(p ) + ,s~F,~(j., ) - 2;~hoF~(p I 
/ a /  

where 

is the electronic kinetic energy density. 
Again the time derivative now of Fa(j2 ) has to be considered, etc. It 

is clear that this procedure has to be repeated indefinitely, that is, one 
never gets a finite closed system of equations. Instead one obtains an 
infinite set of coupled equations because at each step a new operator is 
introduced. The dynamics of the system is given by the solution of the 
following infinite set of evolution equations: 

(i) ~ F6(b) = -f2Fa(b)* - 2Fa(p)*" 

d 
(ii) -~--~tF~(p)=2eoF~(j,) 

(iii) i@teoF6(j, ) = e~F~(p) + e~F~(j2) - 22F~(p) ho 

We are unable to solve this set of equations. We strongly believe that 
the model is not soluble in this sense. On the other hand, the situation at 
T =  Tc is essentially simpler. We are able to prove the following rigorous 
form of the Kohn anomaly, (3-5) expressing the physically so-called softening 
of the mode of the lattice vibrations at the critical point. 
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Theorem 5.3 (Kohn anomaly). For all temperatures fl for which 
6 > 0, the fluctuation operator F6(b) is a constant of the motion, in other 
words, this fluctuation oscillates with zero frequency. 

ProoL By Lemma 5.1, for all temperatures T>  0, there exists a finite 
constant R such that 

If 6 > 0, this implies that 

( (  . O<~& F 6 b+-~p F~ b+ p <.Nlim-~--~=Ov 

By (17) this means that 

0 

Substituting this in the evolution equation (i), one gets 

z-~ddt F ~ ( b ) = - f 2 F , ( b + - ~ p ) = O  

which proves the theorem. | 

In Lemma 5.2 it is proved that the lattice vibration fluctuation F6(b) 
is (abnormally) critical only at the critical point Tc with critical index 

= 1/4. Therefore the Kohn anomaly is a typical phenomenon of the phase 
transition. It is interesting to note that 

i.e., the boson mode fluctuation F6(b) and the fermion density fluctuation 
F6(p) are coherent with correlation coefficient equal to - 1 ,  or the two 
fluctuations become linearly dependent at T =  To. 

Furthermore, as a consequence of the hierarchy of the time evolution 
equations and the Kohn anomaly at T=  To, one gets also that 

d 
T-~ F6(P) = 0 
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i.e., the dynamics of the charge density fluctuations F~(p) is also "frozen." 
Also 

d 
i dt F~(jl) = 0, etc. 

at T =  To. Therefore the hierarchy of equations (i), (ii), (iii) .... describing 
the time evolution reduces to linear algebraic correlations between the 
fluctuation operators. One gets that the soft lattice crystallizes completely 
at T=T,..  

Mathematically this phenomenon at T =  T, manifests an infinite set 
of constants of the motion. It resembles the classical analog of the PF 
instability as an integrable system. 16-9~ 

6. CONCLUDING REMARKS 

The paper contains rigorous results about two well-known physical 
phenomena, namely the Peierls-Fr6hlich instability and the softening of 
the mode in the tight-binding model. The latter is also known as the Kohn 
anomaly. As far as the Peierls-Fr6hlich instability is concerned, our 
contribution consists in providing a rigorous and canonical proof of the 
phenomenon. We use the word canonical because we have succeeded in 
giving a formulation of it in which it is clear that the instability is a 
property of any electronic system on a lattice whose electrons are allowed 
to hop from one lattice site to an other. The lattice structure is essential, 
but the particular type of interaction with the lattice vibrations is irrele- 
vant, i.e., the Peierls argument. 

We studied also the Peierls transition in the tight-binding model, 
describing a linear interaction between the electronic density and the lattice 
vibrations. Because the free energy of this model can be calculated exactly, 
it is often believed that this model is completely soluble. However, if one 
looks at the dynamical equations in Section 5, they appear far from soluble. 
They constitute an infinite set of coupled differential equations. We were 
able to prove one property, namely that the frequency of the fluctuation 
operators involved in the evolution equations is exactly zero at the critical 
point. This gives in particular a rigorous proof of the Kohn anomaly. 
Mathematically, it amounts to the fact that because of the appearance of 
critical fluctuations, the equation for the lattice distortion fluctuation is 
decoupled from the rest of the infinite set of algebraic relations between 
fluctuation operators. Outside of the critical point one cannot say very 
much. Here our only contribution is a rigorous formulation of the dynamics, 
such that the problem is ready for further study. In the dynamical sense the 
model is far from solved. 
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We would also like to point  out that our  proof of the Kohn  anomaly  
is very much dependent  on the proof of Lemma 5.2, where we compute the 
critical index 6 = 1/4 at T =  To. One might guess that this index which we 
computed depends on the type of G i n z b u r g - L a n d a u  approach we used. We 
have definite indications that a computa t ion  in the Gibbs state does give 
the same index. We did not  include these computat ions,  which are long 
and of a much more involved nature. On  the other hand, we also have 
definite indications that the distr ibution obtained in Lemma 5.2 does 
depend on our approach. This distribution, however, is not  used. 

Finally, the model which we studied is fairly well known for its 
applicability as a prototype for a meta l - insula tor  transition. In this paper 
we did not discuss this aspect. However, we come back to this in a future 
contr ibut ion,  where we discuss the impor tant  extension to values of the 
chemical potential p different from zero. The results we present here will 
also enable us to give a rigorous computa t ion  of the conductivity. 
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